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Abstract We present a new Lagrangean approach for the pooling problem. The relaxation
targets all nonlinear constraints, and results in a Lagrangean subproblem with a nonlinear ob-
jective function and linear constraints, that is reformulated as a linear mixed integer program.
Besides being used to generate lower bounds, the subproblem solutions are exploited within
Lagrangean heuristics to find feasible solutions. Valid cuts, derived from bilinear terms, are
added to the subproblem to strengthen the Lagrangean bound and improve the quality of
feasible solutions. The procedure is tested on a benchmark set of fifteen problems from the
literature. The proposed bounds are found to outperform or equal earlier bounds from the
literature on 14 out of 15 tested problems. Similarly, the Lagrangean heuristics outperform
the VNS and MALT heuristics on 4 instances. Furthermore, the Lagrangean lower bound is
equal to the global optimum for nine problems, and on average is 2.1% from the optimum.
The Lagrangean heuristics, on the other hand, find the global solution for ten problems and
on average are 0.043% from the optimum.

Keywords Pooling problem - Lagrangean relaxation
1 Introduction

Blending crude or refined petroleum is at the core of any refinery operation. Most of these
blending operations involve two stages. In the first stage, various raw materials are combined
together in pooling tanks to produce intermediate products. In the second stage, intermediate
products and some of the raw materials are mixed to produce final products. Decisions
pertaining to this two-level blending process are commonly referred to as the pooling problem
(Tawarmalani and Sahinidis 2002).
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The pooling problem can be stated as follows: given raw material with known properties,
pooling tanks with known input—output streams, and final products with known demand and
quality requirements, the problem seeks to determine the raw material quantities to be mixed,
the pool qualities, and the final product quantities. The objective is to maximize profits while
satisfying end product demand and qualities such as sulphur content, density, and octane
number.

The literature on the pooling problem focuses on two major directions: formulations and
solution methodologies. From the modeling perspective, several formulations have been pro-
posed such as the p-formulation (Haverly 1978), the g-formulation (Ben-Tal et al. 1994), the
pq-formulation (Tawarmalani and Sahinidis 2002), and the generalized formulation (Audet
et al. 2004; Meyer and Floudas 2006). The primary difference between the p-formulation
and the g-formulation lies in the source of nonlinearities. In the p-formulation, explicit vari-
ables are used to represent pool qualities, resulting in nonlinearities due to the multiplication
of quality and flow variables. In the g-formulation, proportion variables are used instead
of quality variables to represent the proportion of raw materials used in each pool. As a
result, nonlinearities are due to the multiplication of flow and proportion variables, and appear
in the objective function and quality requirement constraints. The pq-formulation extends the
g-formulation by adding new nonlinear constraints that are derived by Quesada and Grossmann
(1995) using the reformulation-linearization technique. The generalized formulation of
Audet et al. (2004) allows transfer between pools, while that of Meyer and Floudas (2006)
includes decisions related to pool location.

The above mentioned formulations are nonlinear due to the use of bilinear terms either
in the quality constraints or in the objective function. Balancing qualities around the pools
introduces nonlinearity and nonconvexity, making the solution of the pooling problem to
global optimality very challenging (Adhya et al. 1999; Tawarmalani and Sahinidis 2002).
Consequently, the literature is rich with solution approaches that are used to solve the various
formulations of the pooling problem.

One of the first approaches is recursion (Haverly 1978, 1979). This technique might not
converge to a solution, and if it does, often leads to local optima (Lasdon et al. 1979). Suc-
cessive linear-programming algorithms have been widely used to solve pooling and blending
problems (Baker and Lasdon 1985; Bodington and Randall 1979; Griffith and Stewart 1961;
Lasdon et al. 1979; Simon and Azma 1983). The approach solves the pooling problem
through a sequence of linear programs. However, as with the recursion technique, there are
no guarantees of global optimality. Decomposition approaches, such as Generalized Ben-
ders decomposition (Floudas and Aggarwal 1990) and the Global Optimization Algorithm
(Visweswaran and Floudas 1990, 1993), are global approaches. However, their success is
limited to small scale problem.

In the last two decades, most of the work on the pooling problem has focused on generating
tight lower bounds using several relaxation techniques. This includes Adhya et al. (1999),
Foulds et al. (1992), Liberti and Pantelides (2006), Meyer and Floudas (2006), Quesada
and Grossmann (1995), Tawarmalani and Sahinidis (2002). The resulting lower bounds are
integrated into global optimization techniques such as branch-and-bound.

As solving the pooling problem to global optimality is only possible for small scale
problems, heuristic approaches especially those with a guaranteed proximity to the global
optimum are widely acceptable. Audet et al. (2004) proposed an Alternate heuristic and
a Variable Neighborhood Search metaheuristic to solve the pooling problem. However, no
bounds were provided to assess the quality of the solutions found.

This paper proposes Lagrangean heuristics and a lower bound based on a new Lagrangean
relaxation of the p-formulation and the pg-formulation. The relaxation targets all nonlinear
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constraints, resulting in a subproblem with a nonlinear objective function and linear con-
straints. The Lagrangean subproblem is reformulated as a mixed integer programming prob-
lem where the nonlinearities in the objective function are eliminated at the expense of using
additional binary variables. The obtained Lagrangean lower bounds are strengthened by using
valid cuts that are based on the relaxed bilinear terms.

Several applications of Lagrangean relaxation to various formulations of the pooling
problem exist in the literature. Ben-Tal et al. (1994) relaxed the entire constraint set except the
pool mass balance constraints of the g-formulation, and used the resulting lower bound within
abranch-and-bound algorithm. Adhya et al. (1999) relaxed all nonlinear and linear constraints
of the p-formulation. The resulting Lagrangean subproblem consists of optimizing a nonlinear
objective function over a hypercube which is reformulated as a mixed integer linear program.
The lower bound was used within a branch-and-bound algorithm to obtain global solutions.
The approach was applied to several previous problems from the literature and to four newly
constructed problems. Results indicated that the relaxation provided a tighter lower bound
than the one obtained from the linear programming approach based on bilinear envelopes.
Tawarmalani and Sahinidis (2002) applied the same Lagrangean relaxation presented in
Adhya et al. (1999) to the pg-formulation, and proved that it is no tighter than the linear
programming relaxation obtained using bilinear envelopes.

The Lagrangean relaxation proposed in this paper is applied to the p-formulation and the
pq-formulation. The proposed relaxation differs from the relaxation of Adhya et al. (1999)
in that it targets only nonlinear constraints. As a result, the resulting Lagrangean subproblem
has more of the original problem structure. Moreover, the proposed Lagrangean relaxation
differs from the relaxation of Adhya et al. (1999) in the way the Lagrangean subproblem is
reduced to a mixed integer program.

As the Lagrangean subproblem solutions are not likely to be feasible to the original
problem, the paper proposes Lagrangean heuristics based on the subproblem solutions. At
each iteration some variables in the bilinear terms are fixed at the corresponding subproblem
solutions, reducing the pooling problem to a linear program. The first heuristic uses the flow
variables from the subproblem to fix the qualities in the p-formulation or the proportion in the
pg-formulation. The second heuristic carries on from this step by fixing the resulting output
flow variables and solving for the quality and the input flow variables in the p-formulation
or the proportion and the input flow variables in the pg-formulation.

The proposed Lagrangean approach is tested on fifteen pooling problems collected from
the literature. Some problems have a single quality while others have multiple qualities.
Numerical results indicate the stability and efficiency of the solution approach. On average,
the obtained Lagrangean lower bound of the p-formulation is 8.2% from the global solutions.
For eight out of fifteen cases, the obtained Lagrangean lower bounds are equal to the global
optima. For the pg-formulation, the obtained Lagrangean lower bound is on average 2.1%
from the global optimum and is equal to the global solution for nine out of fifteen problems.
For the p-formulation, the proposed two heuristics are able to find feasible solutions that are
within 1.3 and 0.043% respectively. In particular, both heuristics are able to find the optimal
solutions in ten out of fifteen cases. On the other hand, for the pg-formulation, the heuristic
solutions are within 0.79 and 0.2% respectively. Also, both heuristics are able to find the
optimal solutions in ten out of fifteen cases.

The paper is organized as follows: Sect. 2 presents the p-formulation and the pg-formula-
tion. Section 3 details the Lagrangean approach and the subproblem solution. Section 4 de-
scribes the heuristic techniques and the overall algorithm. Section 5 reports the computational
results. Finally, Sect. 6 concludes.
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2 Problem formulations

We adopt the notation of Adhya et al. (1999) with the exception of the quality specification
parameters that we denote by ¢. The p-formulation is then:

J K J
(PP) min > > cijfij— > de D xji (1
k=1 j=1

Jj=1ieN;

st > fij— Zx,k—o vj )

leN,
QJwa]k_Zfzjwfu—o Vijw 3)
i€eN;

J J

Z‘hwx]k kaijk<0 Vk, w 4)
j=1 j=1

J

ijk <sr Vk (5)
j=1

fh<fi < £ Vil 6)
Ay < djw <44, Viw @)
M < xjk <2 Vjokx ®)

For the pg-formulation, we define the additional variable p;; that represents the fraction
of raw material i used in pool j. The pg-formulation is then:

mmz Zx/kzcljpu dkzx/k ©)

ieN;
st.(5,8)and D pj=1 Vj (10)
iENj
> pijxjk—xj =0 Vjk (1n
iEN_,'
J
Z Z LijwPij — Zkw | Xjk = 0 Vk,w (12)
j=1 \ieN;
0<pij<1 Vij (13)

Note that instead of using flow variables f;; and quality variables g j,,, only proportion
variables p;; are used. Therefore, each f;; variable in the p-formulation is replaced with
Dij Z,f xji in the pq-formulation.

In order to apply the proposed Lagrangean approach to the pg-formulation, we replace
each p;j > xji term in the objective function with f;; and rewrite the pq-formulation as
follows:

@ Springer



J Glob Optim (2009) 45:237-257 241

J K J
(PQ) min > > cijfij— > de . xjk (14)
k=1 =1

j=lieN;
s.t. (5, 8,10—13) and

K
pij D xXjk— fij =0 Vi, j (15)
k

K
D fi=D x=0 V) (16)

ieN; k=1

Constraints (16) are mass balance constraints for each pool that are generated from con-
straints (11).

3 The proposed Lagrangean relaxation

Lagrangean relaxation (Fisher 1981) is a technique that converts difficult problems into
easier ones by eliminating difficult constraints and penalizing them in the objective function.
The resulting problem, that is usually easier than the original problem, provides a bound
to the original problem. For the pooling problem, the complicating constraints are the ones
involving bilinear terms.

3.1 Lagrangean relaxation for the p-formulation

Associating unrestricted Lagrangean multipliers « j,, with constraints (3) and non-negative
multipliers Bk, with constraints (4) in (P P), the resulting Lagrangean subproblem is:

J w K w
(SPP) mil’lz z (Cij — Ztijwajw)fij + ZZ(—dk - Zkalskw)Xjk
w=l1

j=lieN; j=1k=1 w=1

J K w
+ZZ( (o +ﬂkw)‘]jw)xjk
1

j=1k=1 \w=
s.t. (2,5-8).

To solve (SPP), we start by eliminating the nonlinearity from the objective function. We
define a new continuous variable u j,, as:

K
Uju = (Z(ajw + lgkw)xjk)qua Vi, w,

k=1

then, the nonlinearity can be eliminated as long as the previous constraint can be linearized.
Using the linear bound constraints qé w < qjw = qj’fw, the fact that g, does not appear in

the rest of the constraints, and depending on the sign of Z,{il (@jw + Brw)xjk, two cases
arise:
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K
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K
Hence, replacing (Z (@jw + Brw)x jk) q jw with u j,,, in (SPP) reduces the Lagrangean
k=1

subproblem to:

J
(SPPU) min Z Z

w
Cij — Z Lijwl jw
w=I1

fu+Z§]

w
—dy — Z Zkw Bkw

(a-s)-

j=lieN; j=1k=1 w=1
J oW
2.2
j=lw=1
s.t. (2,5-8), and
K K
l u .
(Z(a,-w + Bew)Xjk |y < ujuw < (Z(a,-w - ﬂkw)x,k)q Y Viow
k=1 k=1
K
if (Z(a,-w + ﬂkw))x,,»k >0,
k=1
K K
u 1 .
(Z(ajw + ,Bkw)xjk) Gjp < Ujuw < (Z(ajw + ﬂkw)xjk)qu, Vj,w
k=1 k=1

K

Z(‘ij + Brw)

k=1

if( )xijO.

Upon defining a binary variable y , that takes value 1 if (25:1 (ajy + Brw)xjx) = 0and
0, otherwise, and replacing the if—then constraints with inequalities (17-22) below, (SP PU)

is equivalent to the following mixed integer program

J w
(SMIP) min Y > (c,-j -> r,-jwajw)
w=1

j=lieN;

J W
2.2 ujw
j=lw=1
s.t. (2,5-8),

(

K
— Z(Otjw +ﬂkw)xjk)¢I;w +ujw+Myjw <M Vjw
=1
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K
(Z(ajw + ﬂkw)x,-k)q;‘w —juy — Myjuy, <0 Vj,w (19)
k=1
K
—(Z(a,w + ﬁkw)x,-k)q§w Fuju = Myju <0 Vj,w (20)
k=1
K
(Z—(oc,»w +ﬁkw)x,~k)+Mij <M Vjw @1)
k=1
K
(Z(a,-w + ﬂkw)xjk) — My, <0 Vj,w (22)
k=1
Yiw €{0.1} Vjw (23)

3.1.1 Computing the Lagrangean bound

The best Lagrangean lower bound is given by the optimal solution of the Lagrangean dual
problem (Fisher 1981):

J w J K w
min > " (Cij -> tijwoljw) fij + ZZ(—dk + D @ + Bruw)ju
j=1ieN; w=1 j=1k=1 w=1
max w
p=0.a - Z ka,Bkw)xjk
w=I
st (2,5-8),

which is equivalent to:

J w J K w
géilril Z Z (C,‘j — z:l tijwotjw) S+ ZZ(_dk + Z(ijw + lgkw)q?w
w=

j=LlieN; j=1k=1 w=1
w
- ZkwB x"
kw Pkw Jjk
w=1

where H is the index set of feasible solutions to {( i xh, qh) 1 (2, 5—8)} which are obtained
from the solution of (SM I P). The Lagrangean dual problem is equivalent to the following
linear program, commonly known as the Lagrangean master problem (Fisher 1981):

max
B>0,«

(MPP) max6
a,B,0

J W
S't'0+zz Zl‘,’jwfl qlwzxk Ol]w"‘zz Z(ka qu)xjk ,Bkw

j=lw=1 \ieN; k=1w=1\j=I
J K
h h .
I —deijk’ VheH
ieN; j=1 k=1 j=I
/3kw >0

The Lagrangean approach iterates between the solution of (M P P) which gives an upper
bound and a new set of multipliers (&, ), and the solution of (SM I P) which gives a lower
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bound and a solution (x, f, ¢) to form a new cut for (M P P). The iterative approach stops
when the lower and upper bounds coincide.

3.2 Lagrangean relaxation for the pg-formulation

Similar to Sect. 3.1, we apply Lagrangean relaxation to the pg-formulation by associating
unrestricted Lagrangean multipliers o jx and A;; with constrains (11) and (15) in (P Q) re-
spectively, and non-negative Lagrangean multipliers B, with constraints (12). The resulting
Lagrangean subproblem is:

J J K w
(SMIPQ) minz Z(Cij —Xij) fij + ZZ(—dk — Qjk — Zkaﬂkw)xjk

j=lieN; i=1ik=1 w=1
J
IR
j=lieN;
s.t. (5, 8, 16),
(Z(ajk+)"l] +Zt1]w,8kw)xjk)1),] uij+Myij <MVi,j (24
w=1

K w
Z(ajk +Aij + Z tijwﬂkw)xjk)P,”j +uij + My < MVi, j (25)

=1 w=1

K
(Z(a1k+)\l] +ztz]w,3kw)xjk)l7,/ _Myij <O0vi,j (26)

k=1
K
Z(a/k + Aij + Z tt/wﬂkw)xjk)p,] +uij — My;j < ovi, j (27)
k=1 w=1
( ot]k—i-)»,]+Ztljw,3kw)x]k)+Mylj < MVi, j (28)
=1 w=I
K
(Z (Oljk + i+ D Iijwﬁkw)xjk) — My;; < OVi, j (29)
k=1 w=1
yij € {0, 1}Vi, j (30)

The Lagrangean master problem is:

MP 0
(MPQ) a{g%

S.t.
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3.3 Strengthening the Lagrangean bound

To improve the Lagrangean lower bounds, valid cuts are generated by replacing each bilinear
term with a new linear variable and adding linear constraints to the Lagrangean subproblem to
bound the value of the linear variables. For instance, let us define a new nonnegative variable
vjkw to replace each bilinear term g, X jk, i.€.,

Vikw = qjwXjk Vi k, w.

Using the linear bound constraints qﬁ.w < qjw =< q?w we bound the introduced variable
Vjkw as follows:

ik < Vjkw < @5,k Viok w. (31)
Thus, the quality constraints
K
qjw ijk - Z lijwfij =0Vj,w
k=1 iENj

J J
GjwXjk —Zkw 2 Xjk <0 Yk, w
=

J Jj=1
imply that:

K
D ik — D tijwfij =0 Yjw (32)
k=1 ieN;

J J
> Vikw — 2w DXk <0 Yk, w (33)
j=1 j=1

Recall that in Sect. 3, we defined another new variable u j,, to satisfy the following rela-
tionship

K
Uju = (Z(O!jw + ,Bkw)x]'k)q]'w Vj,w

k=1
The above constraints can also be written as:

K

wjw = D (@juw+ Bew)Vjkw Vi w. (34)
k=1

Constraints (31-34) are added to the Lagrangean subproblem to strengthen the Lagrangean
lower bound of the p-formulation. Similarly, to strengthen the Lagrangean bound of the
pg-formulation, we define a nonnegative variable v;jx as v;jx = pijXxjx Vi, j, k. Using the
linear bound constraints 0 < p;; < 1, we bound v; j; as follows:

0 <vwvijr <xjr Vi, j. k (35)
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Thus, constraints (11, 12 and 15) can be written as:

D vk —xjp=0 Vj.k (36)
iEij
J
Z Z LijwVijk — Zkw | Xjk <0 Vk,w 37
Jj=1 \U€N;
K
D vk — fij=0 Vi, (38)
k=1

and the relationship u;; = p;; (Z,i(:l Xk (a_,-k YT D S t,-jwﬂkw)) can be written
as:

K w
uij = ) vijk (Oljk +hij+ D fijwﬁkw) vi, (39)
k=1

= w=1

Constraints (36-39) are added to the Lagrangean subproblem.

Note that the cut generation approach follows the same idea as in the bilinear envelopes
and the reformulation-linearization technique (McCormick 1976; Al-Khayyal and Falk 1983;
Sherali and Alameddine 1992; Liberti and Pantelides 2006).

4 Lagrangean heuristics

As the subproblem solutions are in most cases infeasible to the original problem, Lagrangean
heuristics modify the subproblem solutions to achieve feasibility to the original problem. This
section describes two such heuristics.

4.1 Lagrangean Heuristic 1 for the p-formulation

Given the Lagrangean subproblem solutions ( f , X) obtained from solving (SM1P), the
heuristic first calculates the pool quality g, fixes the g variables in (P P) at g, and solves

the remaining linear program. The obtained solution (x, f, g) provides a feasible solution.
The following is a detailed description of the heuristic:

Step 1: From the quality mass balance constraints (3) :
qjw Zle Xjk — ZieNj tijw fij = OV j, w, calculate the quality values:

2ien; lijwlfij

i, W.
T Js
ket Xjk

q/'w =
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Step 2: Using gy, fix the g variables in (P P) and solve

J K J
(L P7) min z Z cijfij — de ijk
k=1 =1

j=lieN;,
s.t. (2,5-8)
K
Gjw D Xk — D tijwfii =0 Vj.w
k=1 iENj

J

7
Zéijjk — Zkw ijk <0 Vk, w.
j=1 j=1

Step 3: Keep the best feasible solution, ¥, f , g, and its corresponding objective Z geyr1.

4.2 Lagrangean Heuristic 2 for the p-formulation

Heuristic 2 is an improvement to Heuristic 1. When Step 3 is done, Heuristic 2 carries on by
fixing the x variables in (P P) at x. The additional steps are:

Step 4: Fix x in (P P) to x obtained at step 2 and solve

J
(LP);) min z Z Cijf,'j

j=lieN;

K
s.t. Zﬁj—Z)fijO vj

ieN; k=1
K

Qjw D Fjk = D lijufij =0 Vj,w
k=1 ieN;

J J

> Gjwijk —zuw D Fpx <0 Vk,w

= j=I

1 ..

fij = fij = fi] vi, j

Qi = djw = 4y Vi, w

Step 5: For feasible solutions 7, resulting from solving (L P;) in the previous step, fix ¢ to
g in (P P) and solve

J K /
(LP2) min >~ " cijfij — D de D xji
k=1 j=1

j=lieN;
s.t. (2,5-8)
K
q juw ijk — z tijwfij =0 Vjw
k=1 iGN_/'

J 7
Zﬁijjk — Zkw zxjk =0 Vkw
j=1 j=1

Step 6: Keep the best found feasible solution, ¥, f. . and its corresponding objective
ZHeur2-
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4.3 Lagrangean heuristics for the pq-formulation

For the pg-formulation, Heuristic 1 starts by calculating the proportion variables p from
constraint (15) and solves a linear program, resulting from fixing the proportion variables
in (pq) at p. This provides the feasible solution (¥, f). Heuristic 2 carries on by fixing the
output variables in (pg) at x and solving for the input and proportion variables. Finally, the
heuristic fixes the proportion variables in (pg) and solves the resulting linear program to

obtain a feasible solution.

4.4 Overall Lagrangean algorithm

Starting with initial values for the Lagrangean multipliers (¢, § ), the Lagrangean subprob-
lems are solved providing a lower bound Z Lag and a solution ( f , X). Next, the heuristics
are used to construct feasible solutions keeping track of the best found feasible solution. The
master problem is then solved providing an upper bound ZMas and a new set of Lagrangean
multipliers. If the stopping criteria Zitas — Z1La ¢ < € is not met, the Lagrangean multipliers
are updated, and the previous steps are repeated. A flow chart of the algorithm applied to the
p-formulation is shown in Fig. 1.

5 Computational testing

The proposed approach is coded in Matlab 7. The master problems and the subproblems
are solved using GLPK. The testing is done on fifteen pooling problems collected from the
literature. Table 1 summarizes the problem characteristics in terms of the number of pools,
qualities, raw materials, and end products.

We start the testing by comparing the proposed Lagrangean bounds with other bounds
from the literature. For that, Table 2 displays the linear programming bound (LPiHJ) based
on the p-formulation and the bilinear envelopes (Foulds et al. 1992), the linear programming
bound (LPiZ) that is based on the pg-formulation and bilinear envelopes (Tawarmalani and
Sahinidis 2002), the linear programming bound (LPEP) based on the p-formulation and the
reduced reformulation linearization technique (Liberti and Pantelides 2006), the Lagrangean
relaxation bound (LR';ST) based on the p-formulation (Adhya et al. 1999), and the two
proposed Lagrangean lower bounds (LRZE) based on the p-formulation and (LRTE ) based
on the pg-formulation. The last three columns of Table 2 display the quality of the Lagrangean
lower bounds and the global optimal values.

The table reveals that the proposed Lagrangean bounds outperform that proposed by Adhya
et al. (1999), and the LP bound of Foulds et al. (1992), which is expected as the Lagrangean
bound that relaxes fewer constraints is as good as the LP bound as well as the relaxation that
targets all constraints. The table also indicates that the proposed Lagrangean relaxation based
on the pg-formulation (LRpAc;) provides tighter lower bounds than that of the p-formulation.

For nine instances, LRPACl gives lower bounds that are equal to the global optima, while for the
remaining six the Lagrangean lower bounds are on average 2.1% from the global optimum.
On the other hand, the Lagrangean lower bounds based on the p-formulation (LRPAE ) are
equal to the global solutions for eight instances and are within 8.2% of the global optimum
for the remaining seven. Yet, LRZE provides tighter lower bounds for Haverly2, Haverly3,

and RT2 than the ones found in the literature. The only bounds that outperformed LR'/:E are
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Fig. 1 A flow chart of the overall algorithm applied to the p-formulation
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Table 1 Test problem characteristics

Problem Number of

Raw Pools Qualities End

materials for each pool products
Haverlyl 3 1 1 2
Haverly2 3 1 1 2
Haverly3 3 1 1 2
Foulds2 6 2 1 4
Foulds3 11 8 1 16
Foulds4 11 8 1 16
Foulds5 11 4 1 16
Ben-Tal4 4 1 1 2
Ben-Tal5 5 3 2 5
Adhyal 5 2 4 4
Adhya2 5 2 6 4
Adhya3 8 3 6 4
Adhya4 8 2 4 5
RT1 3 2 4 3
RT2 3 2 4 3

LP;‘; of Tawarmalani and Sahinidis (2002) and LP’L’P of Liberti and Pantelides (2006) for

Adhyal, Adhya2, and Adhya3. However, LR'::E provides tighter lower bounds than the ones
found in the literature for Haverly2, Haverly3, Adhya2, Adhya3, Adhya4, and RT2. The only
bound that is tighter than the proposed Lagrangean bound is LPip for Adhyal.

The second part of the results evaluates the performance of the proposed Lagrangean
heuristics. The heuristics based on the p-formulation and the pq-formulation are compared
to two heuristics from the literature: the Variable Neighborhood Search (VNS) and the Mul-
tistart Alternate heuristic (MALT) of Audet et al. (2004). Table 3 displays the quality the
heuristics relative to VNS, MALT, the global optimum, and the Lagrangean lower bounds. It
appears that the p-formulation and the pg-formulation heuristics find the global optima for
ten problems. Heuristic 1 and Heuristic 2 based on the p-formulation are on average 1.3%
and 0.043% of the global optimum, and 7.6 and 6.6% from the Lagrangean lower bound,
while Heuristic 1 and Heuristic 2 based on the pqg-formulation are on average 0.79 and
0.2% of the global solution, and 2.61 and 2.05% from the Lagrangean lower bound. Clearly,
Heuristic 2 based on the p-formulation outperforms Heuristic 1 and Heuristic 2 based on the
pg-formulation despite the fact that the Lagrangean relaxation based on the pg-formulation
provides tighter lower bounds. In addition, Heuristic 2 based on the p-formulation outper-
forms VNS, MALT, and Lagrangean Heuristic 1 on Adhyal, Adhya2, Adhya3, and Adhya4.
However, both Lagrangean heuristics do better than VNS and MALT on Adhya3 which has
the largest number of qualities and pools. The only problem where the Lagrangean heuristics
do not provide a better solution than VNS is RT2 where VNS finds the optimal solution of
4391.83, while the best Lagrangean heuristic finds a solution with an objective of 4390.16.

Table 4 compares the Lagrangean lower bounds and the heuristics with and without adding
the cuts of Section 3.3. Clearly, the addition of cuts leads to tighter lower bounds and,
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consequently, improves the heuristic solutions especially in Adhyal, Adhya2, Adhya3, Ad-
hya4, and RT2.

The last part of the testing concerns the computational time of the Lagrangean relaxation.
Tables 5 and 6 display the number of iterations, the percentage of the total time spent at the
subproblem (SP), the master problem (MP), Heuristic 1 (Heurl), Heuristic 2 (Heur2), and
the total time for the p-formulation and pg-formulation respectively. Clearly, the solution of
the subproblem accounts for most of the computational time, being on average 91.5% for the
p-formulation and 70.9% for the pq-formulation. The heuristic solution accounts for 3.7%
for the p-formulation and 5.5% for the pg-formulation while solving the master problems
accounts for 4.8% for the p-formulation and 23.6% for the pg-formulation. For most of the
problems, the addition of cuts improves the total CPU time. The significant improvement is
in Adhaya2 and Adhaya3 problems. For Adhaya?2, the total CPU time dropped from 4.1 min
to 27.03 s and for Adhaya3 the total CPU time dropped from 52.2h to 2.4 min.

6 Conclusion

The paper proposes a new Lagrangean relaxation and two heuristics for the pooling prob-
lem, based on the p-formulation and the pg-formulation. The relaxation targets all nonlinear
constraints, resulting in a nonlinear subproblem that is transformed to a mixed integer pro-
gram. Lagrangean lower bounds are strengthened by adding valid cuts to the Lagrangean
subproblem.

The Lagrangean heuristics start with the Lagrangean subproblem solutions and modify
them to be feasible to the original pooling problem. The approach is applied to fifteen pooling
problems collected from the literature. The Lagrangean heuristics were found to provide high
quality feasible solutions that outperform or equal MALT and VNS on all but one problem
(RT2). The Lagrangean bounds were found to be tighter or equal to all the bounds provided
in the literature but on one problem (Adhyal).

The Lagrangean approach is general and can be applied to problems with similar structure
to the pooling problem. This direction as well as integrating the Lagrangean lower bound
within a branch-and-bound framework are promising future work.
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